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INTRODUCTION

This project was initiated to develop a methodology to predict production
capability of a given metal parts line through computer simulation. At the pre-—
sent, the quantity of production equipment required to meet a specific production
rate is computed on the basis of past experience. However, it is apparent that
production models for such facilities should incorporate today's technology in
the field of computer simulation. As production equipment becomes more complex
and subsystems are added to the facility to enhance automation, the need for
computer simulation becomes more apparent since it is becoming more difficult to
predict production capability as these subsystems are added. In the past, 2
production facility consisted mainly of semi-automatic lathes with a manual
roller conveyor, some powered conveyors, manual gaging, and manual chip
removal. A modern facility integrates automated machine tools, material
handling, chip transport, and gaging.

The machine tool is serviced by a centralized completely automatic handling
system, a centralized automatic chip transport system, and automatic gaging. The
subsystems, material handling, chip transport, and automatic gaging, can directly
and adversely affect production throughput and the monthly production capability
of the facility. Past methods of predicting production capability counted the
number of machine tools per operation and related production rates to forecast
production capacity as a whole. This can no longer be done in a modernized
facility. With the introduction of automated systems into a facility, personnel
are no longer relied upon to maintain throughput by manually moving shell,
shoveling chips, or manually gaging parts. Emphasis is now placed on these auto-
mated systems and must be considered in predicting throughput and monthly produc-
tion capabilities of modern facilities.

This report covers the simulation of various metal parts lines using exist-
ing simulation models as well as the development of alternate models with which
various 1line characteristics and configurations are developed and tested. The
problems of acquiring the data required for simulation that was not readily
available from the industry is addressed as well as developing a methodology to
solve buffer sizes for automated material handling systems necessary if any accu-
racy is to be obtained from the prediction model.

Theoretical results obtained from these various simulation models are com~
pared to actual production rates and design rates to which several conclusions
and recommendations will be discussed.

INVESTIGATION OF VARIOUS SIMULATION METHODS

Simulation has been defined as the process of designing a model of a real
system and conducting experiments with this model for the purpose either of
understanding the behavior of the system or of evaluating various strategies
(within the limits imposed by a criterion or set of criteria) for the operation
of the system (ref. 1).



The initial effort in this program was to determine what simulation models
were already available. It was found that a profusion exists in simulation pro-
grams for production lines. The problem was in finding and selecting the proper
program for our particular application. Two programs appeared to be most suited
for our needs, one was in simulation language titled General Purpose Simulation
System (GPSS) and the other General Modeling (GENMOD) developed and in use at
ARRADCOM. Both GENMOD and GPSS are simulation models that use software packages
which process the user's particular 1lines and provide various output informa-
tion. They are general purpose simulation models and languages which, when com-
pared to ordinary general purpose programming languages, differ in that the simu-
lation language incorporates means for controlling the sequence in which events
occur. Another advantage of the two models is that the simulation languages
provide builtin diagnostic programs which check for logical error, syntax, and
capacity violations.

Simulation models may be either continuous change or discrete-event types.
Continuous change models are appropriate in simulating a system which consists of
a continuous flow of information or material counted in the aggregate rather than
in individual terms. In discrete-event models changes in the system are concep-
tualized as distinct occurrences; parts flow through the system requiring the
performance of an operation on the part before it can move on to the next opera-—
tion. Queuing theory becomes important in that parts may wait in line before
being serviced. Information regarding the behavior of the model is tabulated and
the results indicate what happens under a particular set of assumptions. Both
GPSS and GENMOD are discrete-event type simulation models and are considexed more
appropriate than continuous change models when simulating metal parts ammunition
lines.

Based on the investigation of the various simulation programs found avail-
able at the time, the GENMOD computer program was selected as the most appro-
priate program for our intended use. It is a generalized model which can inves-
tigate various automated production lines and the efforts of proposed design
changes without constructing an entirely new model, thereby saving costly time in
making models unique to our production line alone (ref 2).

DATA ACQUISITION

For any simulation program to be accurate, the data input must also be accu-
rate and this presented one of the major problems at the very beginning of this
project. The precise data required for most of the simulation programs was not
available. Most simulation programs under consideration for our application
required mean-time-between-failure (MTBF) and mean—time-to-repair (MITR) data for
the production equipment to be simulated. A review of data in the industry par-
ticularly in projectile metal parts plants revealed such data, at least in the
desired form, was not available. Most plant operators knew the availability of
their equipment but not the MTBF or MITR. Availability is defined here as the
percentage of time that a unit of production equipment will operate when re-—
quested. Technically it is defined as the MTBF divided by the total time avail-
able or MTBF plus MTTR.



MTBF

Availability = WIBF F WTTR

Although fairly reliable data on availability of equipment based on past
experience could be readily obtained, the MTBF and MTTR needed to run any simu-
lation program could not be accumulated. It was apparent that MTBF and MTTR data
had to be collected.

All published reports were screened to determine the available data. Masor
Chamberlain Incorporated, the operator of a new facility now under construction,
had contracted with GARD Incorporated for a report (Sept 78) to the Project
Manager Base Modernization office to analyze the Mississippi Army Ammunition
Plant (MSAAP) complex using the GENMOD program. GARD encountered the same pro-
blem of attaining MTBF and MTTR data. GARD reviewed downtime records from the
various Chamberlain plants at Scranton, Pennsylvania, New Bedford, Massachusetts,
and Waterloo, Iowa and developed MTBF and MTTR values (table 1) for the MSAAP
facility for the M483 projectile metal parts. GARD then ran the GENMCD program
and the results were encouraging in the respect that the design rate for the line
was predicted using reasonable buffers on the automatic material handling system
of 320 spaces in all but the forge, heat treat, and phosphate and lube banks.

A review of the data together with the associated availability leads to some
questions as to the reliability of the data. All of the availability numbers
Eﬁbear to be too high based on past experience. For instance, all availabilities
except for forge equipment are around 95%, whereas the expected availabilities
are in the order of 80% or possibly lower in some cases.

Because of this doubt, it became apparent that more information with greater
accuracy was required for an accurate simulation to be achieved. Fortunately,
the National Presto Industries (NPI) in Eau Claire, Wisconsin that produced the
105-mm M1 HE projectile in a large volume was known to keep good maintenance

‘records. The company was visited with the intent of obtaining equipment oper-
ating records for statistical analysis yielding MTBF and MTTR values. _ Under
government auspices, NPI conducted a rebuild and modernization program on their
number one forge line which culminated in an equipment proveout in the spring of
1973. During this proveout, extensive downtime records were taken extending over
a period of 2 months during which the line ran 24 hours a day, 5 days a week. An
example of the record sheet is shown in table 2. Information of this caliber

proves invaluable as far as input data necessary to running a computer simula-
tion.

The forge line consisted of six operations in series with each beginning
with induction heating the billet to approximately 1060°C (2100°F). The billet
then goes through a high pressure water descaler to remove iron oxide buildup on
the surface caused by heating. The block, cabbage, and pierce forging operations
on one transfer press are than performed on the billet producing a bottle type
configuration. The forged shell is then control cooled to room temperature to
produce uniform metallurgical properties throughout the shell.

A failure event in this line was considered to be any repair needed in any
one of the six operations. This failure results in a loss of production. Var-
ious uptimes (MTBF) and downtimes (MTTR) were calculated from the first two col-
umns of table 2. This forge ran 24 hours without any stops for lunch or breaks;



therefore, any stop in the line was due to failure in machine operation. To
illustrate a calculation, the table shows that at 4:00 the forge went down and
started up at 4:01 producing a downtime event of 1 minute, then ran from 4:01 to
4:35 producing an uptime event of 34 minutes. The same analysis was used
throughout the study covering two months in which approximately 1600 individual
uptime and downtime events were recorded.

The time-to-failure and time-to-repair events were totaled and categorized
into time intervals for graphical purposes. By individually graphing the fre-
quency of repairs versus the time-to-repair, histograms were produced which can
visually be interpreted to follow negative exponented functions.

The first histogram (fig. 1) is a graph of frequency of failures versus time
between failures which shows that approximately 180 times the forge line was
running between 0 and 15 minutes before a repair was needed. The next interval
shows that approximately 150 times the forge was running between 16 and 30 min-
utes before a repair was needed, etc. The overall pattern appears to be a nega-
tive exponential function. The, MIBF was calculated to be 59.08 minutes and is
defined as average MIBF =X =<, Where X = individual MTBFs and N = number of
occurrences. o

The second histogram (fig. 2) is a graph of frequency of repairs versus time
to repair which shows that around 350 repairs were needed taking between 0 and 5

minutes. The second interval decreases sharply in number of repairs, 150 repairs
taking between 6 and 10 minutes. Again the pattern appears to be a negative
exponential function. The MTTR was calculated to be 13.64 minutes.

These figures do not include catastrophic failures which alter the two fig-
ures to 53.02 min and 27.27 min for MTBF and MITR, respectively. The forge line
runs at an availability of 82% until a catastrophic failure occurs which then
drops the availability to approximately 65% overall. A catastrophic failure is
defined as a failure which causes a loss of production whose magnitude extends
significantly beyond the range of normal expected values. Experience has taught
production and manufacturing engineers in these plants to bank one week of pro-
duction forgings in order to supply machines down the line with parts to compen-
sate for the catastrophic failures while repairs are being made on the faulty
piece of equipment. ¢

The theory that both histograms are exponential in nature was tested statis-—
tically by using the Kolmogoro®-Smirnov Goodness of Fit Test (table 3). This
test is based on a comparison of the cumulative frequency distribution specified
by the theory to the observed cumulative frequency distribution. Therefore, this
test compares, interval by interval, the areas of a theoretical histogram gener-
ated by the specified function to the observed histogram. The test states that
when subtracting the calculated from the observed a good correlation exists if
the difference is close to zero.

Dx = max [F(x) calc - F(x) obs] (ref 3).

All values approach zero indicating that distribution is close to the assumed
exponential (table 3).



Test results show that the failure cycle and the characteristics of the
forge line can be identified by the negative exponential function of the form

Y = Ae G where A-x 1
mean

and e = epsilon
Time-to-failure equation

-t/59.08
o e

~ 59.08

Time-to-repair equation

-t/13.64
1 e

Y= 13755

These equations are important for computer simulation, since events occurring in
time have now been shown to have a pattern of occurrence which can be imitated,
thereby increasing knowledge of line operation and design. However, in order to
simulate a line, added information is needed on equipment other than just the
forge line; i.e., machine tool turning equipment. '

The opportunity to collect data on machine tools came during the proveout of
the 155-mm M483 metal-parts line at Norris Industries and was collected for a
period of 20 days, 8 hours a day.

Data sheets used during the proveout (table 4) are similar to those used
during the forge line proveout, except for the column marked event code. This
column is used by the data collector to identify what type of event caused loss
of production to the machine and is broken down into eight categories as can be
seen on the bottom portion of the sheet.

A computer program, developed by ARRADCOM's Quality Assurance Division,
analyzed the proveout data and provided information detailing machine breakdowns,
tool changes, and observed production rates. An example of a computer printout
of the daily downtime record sheets is shown as tables 5 and 6 with table 7 pro-
viding a summary for a particular machine for the overall test. A system summary
is also provided (table 8) analyzing by machine and by operation various machine
operating characteristics.

With the acquisition of this data (MTBF and MTTR values) is was possible to
Simulate metal parts ammunition lines by computer.
SIMULATION OF VARIOUS AMMUNITION LINES

Norris Industries

The first line to be simulated was the Norris Rough and Finish Turn M483
line whose input data is listed in table 8.



The first simulation run was made with the control points (buffers) between
operations made unlimited (i.e., the buffers can never fill up, the maximum capa-
city is infinite). Helpful information concerning an imbalance in line design
can be extracted from the average, maximum, and final buffer content summary
(table 9). 1In this case buffers 8 and 12 both averaged a higher rate of contents
due to either an over or under Production of an operation on either side of each
buffer. The category control point data (table 10) identifies this problem more
specifically by the maximum input and maximum output for each buffer. Buffer 8
received 22.8 parts every basic time interval (BTI) while it released only 12,8
parts per BTI. The basic time interval is defined as the real time equivalent to
a single step through a GENMOD model, in this case 1 BTI equals 15 minutes. The
same is true for buffer 12 which accepts 25.1 parts per BTI (100.4 parts/hr) and
releases 11.7 parts/BTI (46.8 parts/hr). The decision as to which side of the
line is at fault relates to the intended design rate of the line, which in this
case is 15,000 acceptable units per 500-hour month. An average rate of 30 net
parts per hour was intended thereby identifying the problem as being an overfed
buffer in each case. Elimination of one machine in both operations 210 (Rough
Turn ID-0D) and 250 (Finish Bore Nose) will not affect the intended designed

Probably the most helpful output information is that identified as projected
average outputs. The following figures identify the capability of the subject
line in daily, weekly, and monthly figures.

Projected average outputs

per basic interval 9.86 (0.66 per min)
per 27 interval shift 270.0
per 3/8/5 week 4043.0
per 63 shift month 16979.0

The first run using unlimited buffers plus input data compiled from the lines own
proveout indicates a production capability of 16,979 parts/500~hour month. The
second run analyzing the Norris line is basically identical to the first except
that limits were placed upon each individual buffer, these numbers being esti-
mates of actual buffer capacities during proveout. - In this case the overall
production rate is lowered to 16,036.

A comparison between the two simulations of key buffers in the line whose
contents varied during the simulation is shown in table 11.

Placing limits on buffers 8 and 12 of 15 and 43 parts (where in an unre-
stricted situation these are constantly filling up) shows that normally low con-
tent filled upstream buffers are now filling due to "pinchpoints” in the 1line
downstream. These buffers are identified as numbers 4, 5, and 6 which are be-
tween the weld, heat treat, and turn 0.D. operations. By increasing the capacity
of buffers 8 and 12, the 1line will be able to handle lower capacity buffers in
the weld, heat treat, and turn 0.D. areas.



Another way of analyzing the Projected rates is to compare it with actual
production rates for accuracy within the simulation run. This can be done by
comparing production rate of operation 305, the last operation in the simulation,
to the proveout. By using the proveouts daily summary sheets (tables 5 and 6)
and relating total parts processed to scheduled uptime, an overall rate of 37.95
parts per hour results. GENMOD identified machines 36 and 37 in the simulation
to be those of operation 305, and by calculating the total parts processed by
each machine to the scheduled production run, a rate of 37.88 parts per Lour
results. Both rates correlate well which lends to a high degree of confidence in
the output information generated by GENMOD on the Norris 155-mm M483 line.

Mississippi Army Ammunition Plant (MSAAP)--Mason Chamberlain Inc.

The next facility to be simulated was the MSAAP 155-mm M483 line (fig. 3)
currently under construction and operated by Mason Chamberlain, Inc. Production
rates were obtained from equipment proposals while MTTR and MTBF values ware
extracted from similar equipment at both Norris and National Presto (table 12).

The first simulation of the line allowed all buffers between each operation
to be infinite. Downtimes for large equipment such as stress relieve and conl,
phosphate and lube, and clean were set at 1 hour with uptimes ranging from 160 to
125 hours. By doing this the line would be run at peak production output without
having any critical large equipment being down. This places a greater strain on
other buffers and by placing no limit upon each, imbalances in the line will show
up in the buffer content summary as large numbers. A list of the buffers and
operations which surround each are shown in table 13.

Buffers 4, 8, and 15 are located around large equipment such as phosphate
and clean. Here each buffer built up its contents even though the large machin-
ery experienced high availabilities with low downtimes. This illustrates the
need for banking at such areas in metal parts lines which is exactly what facil-
ity design engineers do based upon experience.

Buffer 2 which is between operations shot blast and concentric turn has
parts building up in it throughout the simulation. Part of the reason for ttis
is the high production rate of shot blast (396/hr) versus concentric turns
(331/hr). The other reason is concentric turn's MIBF is half that of the stot
blast value and therefore experiences a buildup of parts in buffer 2.

Between operations bore nose and rough turn body is buffer 7 which averaged
1,628 parts. MTBF and MTTR values for each operation were made the same so the
imbalance must be due to production rate differences of 360 per hour versus 324
per hour.

Buffer 21 also has a high average of 211 parts. Both operations (Fiberglass
Wrap and Turn Fiberglass) have the same production rates and in examining the
MTBF values it is shown that the wrap machines only stay running half that of thae
turn equipment. Why does buffer 21 fill up? The answer can be found by examin-~-
ing table 14 where total failures for each operation are listed. Operation 1155
(Turn Fiberglass) experienced a total of 579 failures for an availability of



83.93%. Operation 1160 experienced 464 failures for an availability of 88.82%.
Since operation 1165 had more failures, buffer 21 had to build up its contents.
The quoted production rate for the simulation was 138,908.

All buffers in each simulation having inspection equipment were limited to
130 which is a half-hour production. The two runs with inspection operations
included differ only in the MITR values for the large equipment previously iden-
tified as heat treat, phosphate and lube, stress relieve and cool, and clean.
The first assumes a MTTR of 1 hour, the second 8 hours. The results of such an
assumption reflects upon the pProjected outputs with the I-hour downtime run
yielding 126,984 parts per 500-hour month, while the 8-hour downtime run projects
only 103,884 parts per 500-hour month. The design rate of the line is 120,000
per 500-hour month.

A summary of various simulations made on the MSAAP line using different
buffer sizes and downtime values with the resulting production rates is shown in
table 15. A graph of the runs (fig. 4) shows production rates as a function of
buffer size between operations., The importance in keeping downtimes of large
equipment at a minimum is shown in runs 1 and 3 (table 15) which keep the total
buffering capacity constant (130) per operation and varies downtimes from 1 hour
to 8 hours the projected production rate drop from 127 K to 105 K.

The definite correlation between production rate and buffer size is shown in
figure 4. The larger the buffer the greater the lines ability to achieve the
design rate. Downtimes of 8 hours on large equipment necessitate buffers in the
area of 500 in order to meet rate. Downtimes of 1 hour on large equipment allow
buffers to be as low as 130 and still meet rate.

The simulations show there is a tradeoff between repair rates on equipment
and buffer sizes necessary in absorbing unscheduled downtimes to meeting designed
production levels. This emphasizes the need for banking around heavy equipment
and supports good maintenance policy to keep in-house inventory at low levels.

Louisiana Army Ammunition Plant--Thiokol Corp.

The Louisiana Army Ammunition Plant's (LAAP) 155-mm M483 metal parts 1line
(fig. 5) was simulated using data (table 16) from the Norris Industries prove-
out. Various runs were made using different MTBF and MTTR values and buffer
sizes., As should be the case with initial computer simulations using GENMOD,
unlimited buffers were used to first identify any imbalances or critical areas in
the line. 1In the average buffer content summary (table 17), buffers 1, 3, 7, and
9 all have high values except the last one. Buffers 1 and 7 are both high and
should be because they precede operations nick and break and remove ring which
run at high production rates; remove ring also has a high availability as well.
Buffers 3 and 9 identify the forge and heat treat areas which, from experience,
identifies necessary bank locations. All other buffers show low average contents
indicating a well designed balanced line. The production rate in this run was
predicted to be 57,253 per month.



Runs were made varying the MIBF and MTTR values (table 18) on operation 1110
(slow cool) and on operation 1270 (heat treat). As predicted, the runs with long
repair rates yielded lower monthly production rates when compared with runs which
used short repair rates. This is true even when the availabilities are made
higher for long repair rates when compared with short repair rates and lower
availabilities on operations such as heat treat and slow cool. An explanation is
that key operations (1 machine) such as slow cool or heat treat have a great
affect on production when experiencing long repairs causing depleted downstream
inventories and requiring extra time in replenishing buffers to stable capaci-
ties.

Buffer limits also place restraints on predicted production rates to an even
greater degree than that of MTBF and MTTR values (table 19). By placing limits
of 500 (at forge and heat treat areas) and 88 (actual buffer sizes) on the line,
the production rates falls from 59,717 to 51,384. However, run BAESF80 used the
large downtime figures of 158 minutes. By changing this number to 56 minutes
(run BAESF32) the production rate can be raised to 58,581 per month with the same
buffer limit of 500 and 88.

These computer simulations, show the various fluetuations in production
levels that occur based upon C?éhging uptimes and downtimes as well as buffer
sizes. The computer simulations of the LAAP line show that downtimes of the
magnitude of 189 minutes (on key operations) will prevent achieving the designed
production rate of 63 K per month, but if reduced to approximately 60 minutes,
production approaches the design rate. This is true even if the uptimes are as
large at 790 minutes and a low as 158 minutes. By decreasing the downtime of
such operations, buffer sizes of 500 and 88 will work effectively.

MATERTAL HANDLING BUFFER SIZE

Along with MTBF and MTTR, buffer size must also be provided as input to any
simulation program. The program selected for our studies, GENMOD, is no differ-
ent and a methodology to derive the proper buffer size became highly desirable.
Initial efforts in establishing realistic buffer sizes consisted of contacting
material handling system contractors. These efforts revealed that no system
exists and that buffer sizes are established rather arbitrarily by the buyer of
the material handling system (MHS) and in some cases by the seller of the MHS.
Since there has been very 1little experience in the projectile metal parts busi-
ness with automated MHS, review of past histories in existing facilities was not
very helpful. Therefore, initially the simulation programs were run based on
either infinite buffer sizes or some arbitrary buffer size based on cost conside-—
ration and very limited experience.

If any simulation program was to be reliable, a methodolgy would have to be
developed to derive buffer sizes based on some mathematical principles. The
methodology developed and used for this program is presented here.

It should be understood what the function of a buffer is and how it relates
to the MHS and the plant operations. It should be noted that when we have sev-
eral machines in each operation these machines are turning off and on randomly,



based on their availability. The real time production rate at each operation in
a sequence of operations varies accordingly. In such a situation the MHS must
have buffer to meet one of two conditions. Consider the case where you have a
MHS between operation A and operation B.

Operation Operation

Buffer

If operation A for a short period of time is producing more parts than B, the
buffer (MHS) must absorb parts from operation A until operation B can accept
these parts. On the other hand 1if operation A for a short period of time is
producing less parts than B, the buffer (MHS) must provide parts to operation B
until operation A comes back up to speed. These variations (speed or rate) of
output of A and B are caused by the random turning on and off of several machines
in each operation in accordance with their respective availability. It was
stated earlier that availability which is more readily known for production
equipment consist of

MTBF

Availability = MTBF + MITR

Unlike the situation for GENMOD where we must know the actual values for
MTBF and MITR for each type of equipment, the availability (A) is sufficient
information for calculating buffer size for the methodology presented here. If
it is stated that a machine tool has an availability of 80%, it is expected to
operate 80% of the time. This is a life or death, yes or no situation. A
machine is either running or it is not and no other condition exists. Further,
these two events are exclusive of each other and together these two events, on or
off, make up the complete time; no other event exists. Such a situation lends
itself to the binomial distribution (fig. 6) which was used to develop buffer
sizes for a specific application or production line. The following explanation
is an example of the precedure followed.

Consider the case where you have a line consisting of a series of operations
where you want a production capability of 65,000 units per 500 working-hour
month. Therefore, the desired throughput at any time would be 65,000 divided by
500 or 130 units per hour.

65,000 units/month
500 hour/month

= 130 units/hour

The 130 units per hour is the mean throughput value.
Now consider the situation where there are two operations, A and B. In

operation A assume five machine tools are required to meet the production rate
and six machine tools are required in operation B. In addition, assume that the

10



availability of these machine tools is 80% or 0.8. Therefore, in operation A (5
machines) 26 parts per hour net or 32.5 parts per hour gross must be produced for
each machine. ‘ ‘/

130 parts/hour
5 machines

= 26 parts/hour/machine (net)
or

ng = 32.5 parts/hour/machine (grpSs)

The actual cycle time for the machine in operation A is 110.77 seconds/part.

3600 seconds/hour
32.5 parts/hour

= 110.77 seconds/part

In operation B (6 machines) 21.667 parts per hour net or 27.0833 parts rper
hour gross must be produced for each machine.

130 parts/hour
6 machines

= 21.667 parts/hour/machine (net)

\“-"{l'
Zéiggz = 27.0833 parts/hour/machine (grdss) )
’ Y

The actual cycle time for the machine in operation B is 132.92 seconds/part.

3600 seconds/hour
27.0833 parts/hour

= 132.92 seconds/part

If these machines randomly turn on and off in each operation but at an
availability of 80%, the percent of time a specific number of machines 1is oper-
ating can be determined by using the binomial distribution. For operation A
(table 20) exactly five machines will be operating 32.768% of the time, four
machines will be operating 40.96% of the time, or at least four machines will be
operating 73.728%Z of the time. The expected time for the remainder of the
machines can be calculated by using the binomial distribution. The time for
operation B with six machines can be calculated by the same method (table 21).

By taking a unit of time (hr) the various rates of production over the per-
centage of time the machines are operating (up) can be calculated for that
hour. For example, in operation A five machines are up and running 32.768% of
the time; therefore, parts are being produced at the rate of 162.5 parts per
hour. This occurs over éffime period of 19.6608 minutes. /

< 0 4

U
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5 parts/hour

(5 machines) (32. machine

= 162.5 parts per hour)

(0.32768) (60 minutes) = 19.6608 minutes

Since 162.5 parts per hour is 2.70833 parts per minute, operating for 19.6608
minutes produces 53.248 parts.

) (162.5 parts/hour) _
(19.6608 minutes (60 minutes/hour) - 53.248 parts

The above calculations are shown in tables 22 and 23, columns I through V. These
columns can be completed by using similar calculations for each row developed for
operations A and B starting from the top row and working down. Columns VI
through X for each operation can be calculated by starting from the bottom row
and working up.

It is unlikely that machines will follow either pattern, but these two con—
ditions represent the extreme of all other conditions that will occur randomly
within the binomial distribution. A definition of a maximum condition is when
starting out with all machines in a given operation up and running and a minimum
condition is when starting out with none of the machines operating. Therefore,
columns I through V represent the maximum condition where the majority of parts
are produced at the front end of the time interval and columns VI through X
represent the minimum condition where the majority of parts are produced at the
back end of the time interval.

Operation A producing at the maximum and operation B producing at the mini-
mum are plotted in figure 7. The figure shows that at the time interval of 60
minutes, operation A produces more parts than operation B can accept; therefore,
the MHS between the two operations must be able to accept or buffer these
parts. The maximum vertical distance between the plot of the two operations
represents that buffer and measures a imately 20 parts. Since the maximum
and minimum conditions represent the  extremes of all the situations that might
occur, a buffer size of less than 20 parts absorption is actually required in
most cases. The question arises as to what is the expected frequency that MAX A
and MIN B would occur. MAX A must have a special case of 5, 4, 3, 2, 1 machines
up equivalent or similar to a 5~card draw without replacement equal to 5!.. MIN B
must have 0, 1, 2, 3, 5, 6 equal to a 6-card draw without replacement or 6!. The
frequency of a MAX A and MIN B occurring simultaneously would be the product of
the two or (5!) (6!) = 86,400. Therefore, this event could occur once every
86,400 time intervals. Since the time interval is 1 hour, a MAX A-MIN B could
occur once every 86,400 hours. Some cases may not have five and six machines
coupled together. Operations such as forge or heat treatment may have only two
machines [(2!)(2!) = 4 hours]. 1In this case the maximum or minimum condition are
met every 4 hours. If a 40-hour capability without exceeding buffer capability
is needed, take the buffer quantity calculated for one hour time interval and
multiply that value by 40 hours divided by 4 equals 10. In many instances this
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low number of machines coupled with the complexity of the machines resulting in
availabilities lower than 0.8 has led to manufacturers banking as much as one
week's production of process pleces to maintian throughput to meet monthly pro-
duction deliveries.

Consider again operation A and B where the opposite of the above example
occurs. Consider the situation where operation A produces at the minimum and
operation B produces at the maximum.

A similar situation exists for MIN A and MAX B (fig. 8). Operation B is
asking for or accepting more parts than A is producing at that moment. The ver-—
tical distance on the chart indicates B will ask for 21 more parts than A is
producing during the time interval. If these parts are to be provided by the MHS
S0 as not to adversely affect throughput, then 21 parts must be on the material
handling equipment between operations A and B to buffer these operations. There-
fore, the material handling space between operations A and B should be 20 vacan-
cies plus 21 fills or 4l spaces.

This buffer is small because we selected two operations that are closely
balanced. The buffer is affected according to the unbalance between opera—
tions. Nevertheless, the methodology indicates the buffer required. These cal-
culations are programmed on a computer and the charts are printed out. A review
of these charts quickly points out unbalanced conditions between operations and
any problems that may result in buffer sizes. The buffer sizes obtained from
this methodology can then be used as input for buffer sizes to the GENMOD program
and the facility tested for monthly production rates.

It was found that by using actual calculated buffer sizes as input to the
GENMOD program, more realistic results were immediately obtained based on what
would be expected from past experience of similar lines with similar quantities
of machine tools. Of most interest was the finding of the relationship between
buffer size and predicted monthly production capabilities from the GENMOD pro-—
gram. A buffer size of one-hour production for MSAAP, 260 parts per hour, ap-
pears to be more than adequate to meet most conditions. It also appears that
even one-half hour production would be adequate in most cases to meet monthly
production rates provided a reasonable maintenance program is implemented to keep
the equipment operating at reasonable availability values and catastrophic down-
time was kept to one hour supplemented by banks in the line as indicated by
GENMOD.

The results of the GENMOD also indicated where cost trade~off might be made
between the MHS buffer and an additional machine tool to better balance the line,
and this factor will also be considered in future design of metal parts produc-
tion line.

CONCLUSIONS

l. It appears that metal parts production facilities for ammunition projectiles
can be simulated by computer programs. The GENMOD program developed at ARRADCOM
appears to be the most suitable for such simulations.
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2. Effective simulation programs require fairly accurate input data with regard
to mean time between failure (MTBF), mean time to repair (MTTR), and buffer size.

3. When provided with good input data, the GENMOD program appears to predict
monthly production rates that coincide with past experience for similar produc-
tion lines.,

4. Simulation programs such as GENMOD permit line and sensitivity analysis of
parameters previously not available to the productin line designer. Such analy-
sis permits the designer to optimize the production line for throughput and fa-
cility cost before it is constructed.

5. Line simulation permits analysis of cost trade-offs for integrated facilities
where material handling systems, production equipment, etc., can be traded off
one for the other for optimum cost while still maintaining monthly production
rates.

6. Simulation programs such as GENMOD point out the importance of preventive
maintenance programs by predicting the effect on monthly production caused by
catastrophic failures. The trade—off of additional equipment and storage of
parts through banks becomes evident with the analysis of a simulation printout.

7. Analysis of GENMOD printouts permits the designer to assess choke points in
the production line through the filling or emptying of buffers. The time to fill
or empty such buffers can also be seen and evaluated.

8. The methodology developed using the binomial distribution is very helpful in
calculating accurate buffer requirements.

9. The binomial distribution methodology also illustrates the advantage of sev-
eral machines producing at a low rate rather than a few machines producing at a
high rate with regard to reliability and meeting expected monthly production
rates.

10. The binomial distribution methodology is based upon availability data which
is readily obtained in the metal parts equipment industry. There is agreement
within the industry as to the reliability of such data.

RECOMMENDATIONS

l. MITR and MTBF continue to be collected on all metal parts production equip-
ment to improve the reliability of predictions developed under the simulation
programs.

2. Simulation programs such as GENMOD continue to be studied, evaluated, and
used on existing and future metal parts production lines to improve the perform-
ance of the simulation program and to gain a deeper insight into the performane
of the production line.
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3. The GENMOD program should be used in all future production line layouts be-
fore the lines are built.

4, The binomial distribution methodology developed under this project be made
available to the material handing industry for future use.
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Table 20. Percentage of time various numbers of machines are operating (operation A)

2 57
5 0
5 [0,8', (0.2 | = 0.32768
.’—-Z’Ji: Wl ! | 0.32768
(20x|
14 1
5! [ 0.8 Fo.z] - 0.4096
R ER N B | 0.73728
= <43 F ~ 2
50 0.8 0.2 = 0.2048
3zt L L] 0.94208
2 _ =b 13
50 0.8 | [oz] - o.0s12
2R el O Rt 0.99328
- 4l 44
5! 0.8 0.2 = 0.006
T 0.99968

0~
Sl [6.8 ] , O.é]s = 0.00032
U5 1.00000

M =np = (5)(0.8) = 4.0 machines

(4.0) (32.5) = 130 parts per hour throughput

Design production rate = 32.5 parts per hour per machine
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Table 21. Percentage of time various numbers of machines are operating (operation B)

% £
- 46 40
6
Y3 0.8 0.2 = 0.262144
= F = 0.262144
6! SR T |
s {0.8 | (0.2 = 0.393216
T J L | 0.655360
- 4 B 12
6! [0.8 0.2 = 0.245576
17! | 0.0901120
—~ . 3F 13
2;3. 0.8 0.2] = 0.081%
O 0.983040
. < <5 2 - ~14
5. Jo.s 02 = 0.01536
275 R B I 0.998400
- 71 ( 15
6! 0.8 0.2 = 0.001536
TG 1L 0.999936
b 0 6
6! [o.g 0.2 - 0.000064
06l | ] 1.000000

M=np = (6)(0.8) = 4.8 machines
(4.8)(27.0833) = 130 parts per hour throughput

Design production rate = 27.0833 parts per hour per machine
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